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Abstract—The application of Artificial Intelligence (AI) into
Industrial Human-Machine Interfaces (HMIs) moved old systems
with physical buttons and analogue actuators into adaptive
interaction models and context-based self adjusted interfaces.

To date, little attention has been paid to industrial Human-
Machine Interfaces (HMI) which play a vital role in the com-
munication between worker and complex productive systems.
Current industrial HMIs do not take into account operator
behaviour, but rather focus on the production process. To enhance
User Experience (UX) and improve performance it is necessary
to adapt the interface to the needs of the operator.

This paper proposes a Machine Learning (ML) based operator
interaction Data-Driven methodology to extract a set of interface
adaptation rules. The methodology optimizes the interaction by
reducing the number of actions and hence the amount of time
and possible errors in repetitive monitoring and control tasks.
An experiment with real operators was conducted to validate
the proposed approach. The system was able to extract their
interaction patterns and propose temporal interface adaptations,
leading to a personalized, adaptive and more effective interaction.

Index Terms—Adaptive user interfaces, adaptation rules, in-
telligent industrial HMI, temporal interaction patterns.

I. INTRODUCTION

Currently, in the so-called era of Industry 4.0, the rapid
advance of new technologies and their application to manu-
facturing, has given rise to more and more complex automated
industrial processes. This increase in complexity, has generated
a need for more innovative information visualization systems
that allow the machine operator to perform supervision and
control tasks more effectively [1]. In such a context Human-
Machine Interfaces (HMI) have become key drivers of the
manufacturing process [2].

In recent decades, HMIs have been designed by industrial
machine manufacturers focusing exclusively on the process.
These are simple user interfaces that display information of
different variables and how they impact the industrial process
without considering the characteristics of the operator [3]. The
main goal of industrial HMIs is to control the process and
based on its status, help operators in the decision making
process.

More recently, methodologies such as User-Centered Design
(UCD) have been introduced, allowing the involvement of
machine operators in the redesign of industrial HMIs [4].
However, this approach could be greatly improved with the

addition of information about how industrial control system
operators interact with HMIs.

The analysis of the knowledge extracted from HMI inter-
actions, can provide more accurate information about their
behaviour, capabilities and process knowledge. This data can
then be applied to the interfaces redesign process leading to
more efficient interaction by reducing the number of operator
interaction errors. Therefore, introducing Adaptive User In-
terfaces (AUI) into industrial environments has emerged as a
very promising technique to improve the interaction efficiency
and to reduce the number of errors in the industrial process
control.

Clickstream is generally understood as the sequence of in-
teractions that the user performs with the different elements of
the interface [5]. In industrial HMIs, this interaction is carried
out through click events on the different interactive elements.
These events are gathered in a file marked with a timestamp,
and hence, we can determine at what time and with which
element the operator has interacted. Clickstream analysis is
one of the most frequently used techniques to understand user
behaviour whilst is interacting with the interface [6] [7].

Modern industrial scenarios are frequently characterized by
two factors: (i) high industrial process operator specialization
and (ii) complex production systems, which have a strong
influence on the activity and performance of the operator. In
such a context it is critical that HMIs make smart adaptations
to the capabilities of the operator [8], actions performed [9],
and context [10]; while respecting the usability and integrity
of the interface and without adversely affecting operator
performance.

Any set of repetitive actions based on the process status
performed by the operator over time, can be considered as
an interaction pattern that can be automated. Such sequences
can be gathered and Machine Learning (ML) algorithms
can be applied to extract operator interaction patterns and
provide industrial HMI adaptations. Due to the technological
specifications and limitations of current industrial HMIs, these
adaptations cannot be deployed automatically in the interface
and hence, in this work, they are presented as a set of rules
which will be subsequently supervised and implemented by a
human. With the implementation of these adaptations in the
industrial HMI, the interaction will be optimized reducing the



number of clicks and error probability.
However, one of the most challenging aspect of AUIs is to

decide when to adapt. If the layout is constantly changing,
the usability of the industrial HMI can be penalized [11],
adversely affecting operator effectiveness and productivity, and
increasing the number of errors. It is therefore critical to
determine in which time interval an interaction pattern occurs
with the greatest frequency. With this information to hand, the
AUI can generate an adaptation in the correct time interval
without negatively impacting the usability of the HMI.

This paper presents a Data-Driven methodology, which, by
applying ML to the information obtained from the industrial
HMIs, extracts knowledge from the interaction data and pro-
poses temporal adaptations in the HMI. These adaptations are
formulated as a set of Event Condition Action (ECA) rules.
To evaluate the feasibility of the proposed methodology an
experiment was conducted in a real setup. The experiment
tracked the interaction of 34 operators against a real industrial
process HMI for a period of 151 days, 5 months.Following
the proposed methodology, 54 interface adaptation rules were
extracted, leading to interaction time optimization and error
probability reduction.

II. RELATED WORK

Adaptive User Interfaces (AUI) can broadly be defined as
user interfaces that can be adapted based on user and the
context, modifying not only the content to be displayed, but
also the actions which can be performed without penalizing
usability [12]. In recent years, there has been growing interest
in AUIs and their application to different fields. For example to
improve accessibility [13] or to obtain personalized interfaces
[14].

One of the most widely used methodologies for adaptation
has focused on analyzing the context of use. In [15] an adapta-
tion framework was presented with emphasis on platform, user
model and environment. Changing contexts and user emotions
as inputs for user interface adaptation were studied in [16].
Although, these methods improve usability and enhance UX,
they lack the incorporation of knowledge extracted from user
interaction data in the adaptation process.

In contrast, other studies have incorporated user interaction
data in the adaptation process. In [17] a framework for
redesigning interface widgets based on user behavior was
proposed. In [18] the authors presented an adaptation of the
elements of a menu. This adaptation is performed by identify-
ing the most and the least selected elements. The use of user
interaction data in both studies is well-established, however,
none of the presented adaptation scenarios were similar to the
characteristics and limitations of industrial scenarios.

The application of AUI in industrial environments has
been examined in several studies. In [19], an adaptive frame-
work was proposed to assist operators in complex assembly
processes. Through the use of different gesture and objects
recognition devices, the system guided the operator in complex
tasks. A system to develop AUI in Android devices was imple-
mented and tested in [20]. This adaptation was based mainly

on operators, roles and state of the system in manufacturing
scenarios. Both these approaches are device-oriented but they
do not consider industrial HMI, one of the most important el-
ement in manufacturing processes. Finally, in [21] an adaptive
Cyber-Physical System (CPS) was presented, designed to help
the operator by adaptive scheduling in the decision making
process and thereby improving factory performance.

One final approach in the literature has been the evaluation
of AUIs. In [22] the authors proposed a study of the influence
of interface adaptations on end-user satisfaction. The combi-
nation of user feedback and context monitoring to evaluate
the usability of interface real-time adaptations was studied in
[23]. Other studies, such as [24] have shown that AUIs can
facilitate users in complex tasks.

The aim of this paper is the definition of a Data-Driven
methodology for interface temporal adaptations. Taking into
account the characteristics and limitations of industrial HMIs,
the methodology analyzes information from operator interac-
tion and proposes a set of temporal adaptation rules to improve
the interaction process and reduce interaction errors without
penalizing usability.

III. METHODOLOGY

In this section we present the proposed Data-Driven method-
ology to generate temporal interface adaptations expressed as
adaptation rules.

This methodology takes as inputs the industrial HMI defini-
tion and the interaction dataset, and by leveraging data-driven
techniques, generates as output a list of interface adaptations
rules in specific time intervals. Those adaptations consist of
interface redesign actions and moving interface elements.

We start with the definition of the inputs, which includes
a formal description of the industrial HMI and the operator
interaction dataset. Next, we explain the different steps of the
proposed methodology to (i) build valid interaction sequences,
(ii) determine which are the most frequent sequences and
hence candidates to adaptation, (iii) identify the time intervals
when the sequences occur most frequently and (iv) generate
the adaptation rule. Finally, the industrial HMI temporal
adaptation rules are presented as set of Event Condition Action
(ECA) rules.

A. Formal Description of the industrial HMI

Industrial HMIs are composed of information panels and
clickable elements formed in most cases by several screens
which run on industrial machines enabling real-time process
monitoring and control. They also allow operator interaction,
for example, to navigate between different screens or modify
process variables. Thus, it is necessary to identify the elements
that comprise all the interfaces, specifying whether they are
informational items (e.g: text elements, labels) or interactive
items (e.g: buttons and links).

In the current research a customized lightweight User In-
terface Description Language (UIDL) was designed because
industrial HMIs are highly manufacturer dependent in terms
of layout options and interface elements. A customized UIDL



TABLE I: Description of interface elements.

Field Description
Id Element identifier

Type Element type (Informative or interactive)

Content Displayed content (Text, image, alarm)

Event Different events that can be triggered (Click)

allows us to formally describe each element of each interface,
regardless of manufacturer limitations and characteristics, hav-
ing all the necessary information related to the industrial HMI.

The next section sets out the screens that comprise the
industrial application and for each interface the displayed
elements are extracted. The most relevant information of each
element, such as type, content and event is described in Table
I.

A formal description of all interfaces H =
[hmi1, hmi2, . . . , hmin] and different items I =
[item1, item2, . . . , itemn] that comprise them are obtained as
an output of this preliminary step. It is worthwhile mentioning
that, each itemi can be informative or interactive and belongs
to a single interface hmii.

B. Interaction Dataset Specification

One of the existing shortcomings in industrial production
environments is that industrial HMIs are designed without
prior knowledge of how each operator interacts with the
interface for process control and monitoring. The lack of this
information in the designing process can make the interaction
not optimal in terms of number of clicks. By default, indus-
trial HMIs do not register operator’s interactions. Although,
some manufacturers, do offer additional tools1 to track the
raw interactions of users and process variables, storing them
sequentially in a log file.

In the present paper the interaction raw dataset is considered
as a sequential record of unique items, where each row is
composed of event ei :=

[
ti, a

j
i , pi

]
where:

• t ∈ N is the time stamp.
• a ∈ A = {aj1, a

j
2, . . . , a

j
n−1, a

j
n} where A is a finite

set of known interactions, indexed by j, in the different
elements of the interfaces.

• pi = (v1, . . . , vm) : i ∈ I is the process variables values.
The output of this step is a log file where the interaction

of every operator (including the temporary mark and process
variables values) is registered, as illustrated in Table II.

C. Generation of Valid Interaction Sequences

In this step raw interaction dataset is parsed to generate
valid worker interaction sequences. Perer et al. [25] defined
an event sequence E =< e1, e2, . . . , em > (ei ∈ D) as an
ordered list of events, where D is the event set and i defines
the order. This means that ei has happened before that ei+1.

1Siemens WinCC/Audit, https://support.industry.siemens.com/cs/document/
109749101/wincc-audit-v7-5-sp1 (Accessed: Apr 2020)

TABLE II: Raw interaction dataset specification.

Timestap Action Process variables
t0 a20 [v10 , v

2
0 , . . . , v

m
0 ]

t1 a11 [v11 , v
2
1 , . . . , v

m
1 ]

t3 a63 [v13 , v
2
3 , . . . , v

m
3 ]

t7 a57 [v17 , v
2
7 , . . . , v

m
7 ]

t8 a18 [v18 , v
2
8 , . . . , v

m
8 ]

In addition to this, to be considered as a sequence, E must
contain at least two events.

Using the above definition as well as raw interaction dataset
(described in the previous section) as input, it is then possible
to extract valid interaction sequences. We consider a valid
interaction sequence si = [einit, e

i
1, . . . , e

i
ki
, efinal] to be a

set of events ei where:

• ajinit and ajfinal are known, determining the beginning
and the end of a sequence.

• l is sequence’s length and must be ≥ 2.

Algorithm 1 extracts all valid sequences in a sequential
operation. First, condu and condv are defined with the specific
actions which determine sequence beginning and end. Once
both conditions are set, the algorithm examines the array
finding the position pu of the first action aji that meets the
condition condu. Then, it tries to locate the position pv of
the first action aji that meets condition condv , updating the
position of pu if it finds a new one. Finally, the subsequence
s := E[epu , epv ] is appended to S.

Algorithm 1 Valid sequences extractor.
Data: < E = (e1, e2, . . . , en), condu, condv >
Result: S = (s1, s2, . . . , sn)
n← len(E)
i← 1
while (i ≤ n) do

while (i ≤ n)and(ei 6= condu) do
i← i+ 1

end
pu ← i

while (i ≤ n)and(ei 6= condv) do
if (ei = condu) then

pu = i
end
i← i+ 1

end
pv ← i

if (i ≤ n) then
Append E[epu

, epv
] to S

end
i← i+ 1

end

This step generates a dataset S = (s1, s2, . . . , sn) which
contains all the valid sequences performed by the operator.



D. Filtering and Selection of Candidate Sequences

The main objective of this step is to select sequences that
occur with high frequency, and hence, candidates for adapta-
tion. We classify a sequence s as frequent if its repetition ratio
r in a finite time interval is above a predefined threshold α.
The repetition ratio r and α have an inverse relationship.

Once α is established defining which is the minimum
repetition ratio to be considered as a repetitive sequence, we
review all the valid sequences of dataset S calculating r for
each sequence s. If r is higher than α, the sequence si is
appended to candidate sequences list C. Algorithm 2 sets out
the process.

Algorithm 2 Filtering candidate sequences.
Data: S = [s1, s2, . . . , sn]
Result: C
Initialize α
for (i = 0,i < len(S),i++) do
Calculate r of si

if r > α then
Append si to C

end
end

The output of this step is a dataset C, containing the
sequences whose repetition ratio r is above the threshold per-
formed by the operator in an defined finite time interval. These
interaction sequences become candidates for the adaptation.

E. Temporal Adaptation Rules Generation

Using the dataset C as input, in this step we generate the
temporal adaptation rules in two phases: (i) Time interval de-
tection and (ii) Adaptation actions based on sequence mining.

The time interval T where the action is most frequent is
identified and the sequence is parsed to determine which itemi

might be adapted. The adaptation rule defines which itemi

should be moved to which interface hmii. In this way, the
number of user clicks required to perform the action is reduced
and therefore the interaction is optimized.

The rules are formally denoted by an ECA rules where:
• E: Event aj1 is triggered
• C: ti ∈ T
• A: Move itemi to hmi1
1) Detection of Time Intervals: To resolve the problem of

identifying the time intervals in which the rule should be
activated, it is necessary to first determine the intervals over
the time in which user interaction is more frequent. This can
be addressed by 1-D Density-based clustering.

This type of unsupervised learning method identifies dif-
ferent clusters based on the density over the space. Dense
areas are considered as a cluster and non-dense areas as a
separation. These clusters indicate the time intervals when
operator interactions are more frequent, and therefore the
adaptation rule should be activated.

In this step, we determine the relevant clusters from dataset
C. The first and last element from each cluster are selected,

extracting the information of the begining and the end of the
time interval. By detecting these time intervals, we ensure
that the adaptation rule is only activated when the candidate
sequence is frequent.

2) Adaptation Actions Based on Sequence Mining: Once
the time intervals are defined, the adaptations are generated.
In this step, the interaction sequence is parsed analyzing each
itemi the user has interacted with.

When the end of the sequence is reached, we check which
information elements exist in this interface hmin, and if
they are not in the interface hmi1 an adaptation is proposed.
Algorithm 3 describes the process.

Algorithm 3 Adaptation actions generator.
Data: < C = (s1, s2, . . . , sn) >
Result: R = (r1, r2, . . . , rn)
foreach si in C do

extract different steps of si
if itemi of hmin is informative and not in hmi1 then

move itemi to hmi1
end

end

At the end of this step a set of adaptation rules R =
[rule1, rule2, . . . , rulen] are generated. The implementation
of this set of rules R, will modify the interfaces, leading to
a reduction of number of clicks in repetitive tasks performed
by the operator.

IV. VALIDATION

We conducted an experiment to validate the proposed
methodology, with two main objectives: (i) To infer interface
adaptations based on operator-HMI interactions and (ii) To
validate the inferred adaptation rules by the application in the
industrial HMI.

With this purpose in mind, we divided the experiment into
two phases: (i) Phase 1 lasts until enough interaction data to
generate interface adaptation rules have been gathered to train
the model, and (ii) Phase 2 comprises the validation of changes
made in the interface after applying the adaptation rules.

The aim was to test and validate the proposed method-
ology in a real industrial scenario. The experiment consists
on an industrial machine in which a number of operators
interact with a productive system through the HMI to obtain
a personalized product. In this context, an industrial mixing
machine from the food sector was used in the experiment.
Fig. 1 illustrates the main interface of the industrial mixing
machine, in which the operator can adjust different parameters
by clicking on the interactive elements. Every time a mixture is
ordered the operator carries out a set of single interactions with
the machine HMI. These interactions are related to adjusting
different parameters such as additive quantity or mixture type.

The interaction process of preparing a mixture can be
described as a finite state machine (FSM) where the operator
sets up different parameters until the values are considered
OK. Fig. 2 displays the finite state machine.



Fig. 1: Industrial mixing machine main interface.

Fig. 2: Interaction process of the finite state machine.

A. Participants

Thirty-four volunteers (21 male and 13 female) aged 23
to 45 participated in this study. All the interactions with the
different elements of industrial mixing machine interface were
tracked during the working shift.

B. Formal description of the interface and interaction dataset

The industrial mixing machine application consists of 6
different interfaces. A JSON file describes these six interfaces
and all the elements. Each element has a single numeric
identifier and belongs to a unique interface. Fig. 3 illustrates
an example interface that is formally described as follows:

Fig. 3: Container selection interface.

TABLE III: Example trace of raw interaction dataset.

Timestamp Element
1557994085106 BTN1OK

1557994215793 BTN0u8

1557994221803 BTN1Container

1557994230690 BTN1Additive

1557994231974 BTN3ReduceAdditive

interface4:{
elements:{
45:{

type:text,
text:"Container?",
editable:no,
style:{background-color:black,

text-color:white}
}

46:{
type:toggle,
event:click,
action:togglevalue}

47:{
type:button,
text:"OK",
event:click,
action:navigate,
style:{background-color:black,

text-color:white}
}
}

}

The next step was to track all single interactions with the
different elements of the interfaces. Every time a operator
interacted with the HMI all the information related to that
interaction (Time stamp, element and process variables) was
collected in a file. Table III represents an example trace of
gathered interaction dataset in a time slot.

C. Procedure

1) Valid sequence generation: Taking into account the
formal description and the interaction dataset, the valid in-
teraction sequences were generated. In this step 10,008 single
interactions were transformed into 894 valid sequences. Each
sequence corresponded to a mixture customization.

A valid sequence starts when the operator logs into the
system and finishes when clicks OK button. Table IV shows an
example of a valid interaction sequence. The sequence starts
when the user logs into the system ’BTN0u9’, reduces additive
level ’BTN3ReduceAdditive’ (by default starts from 3), selects
mixture-A ’BTN5Mixture-A’ and finishes when ’BTN1OK’ is
clicked.

2) Candidate sequences selection: This step was divided
into two different actions, (i) first the most interactive operators
were selected and then (ii) the most repetitive sequences were
identified.

Fig. 4 shows all the sequence repetitions. As we can
observe, the sequence repetitions follow an exponential trend
meaning that the most repetitive interaction sequences were
repeated many times and the less common interactions were
repeated infrequently. For this reason, we defined the threshold



TABLE IV: Example of a valid interaction sequence.

Timestamp Element
1558333048305 ’BTN0u9’

1558333063963 ’BTN1Additive’

1558333065339 ’BTN3ReduceAdditive’

1558333067170 ’BTN3OK’

1558333069467 ’BTN1Mixture’

1558333073638 ’BTN5Mixture-A’

1558333075042 ’BTN5OK’

1558333076809 ’BTN10OK’

Fig. 4: Operator most repetitive sequences over time.

α for filtering the candidate sequences as 1st quartile because
statistical values as average or median were not representative
in this situation. At the end of this step, the adaptation
candidate sequences were obtained for each operator, which
were those above the threshold.

3) Density-based clustering: To determine the dynamic
fitting intervals, three different clustering algorithms were
tested: HDBSCAN [26], OPTICS [27] and MeanShift [28].
In the case of HDBSCAN and OPTICS, an initial parameter
tuning is required. This configuration is problem dependent
and can distort the results if is not properly done. This is why
MeanShift algorithm is applied, specifying not to cluster all
points. Hence, outliers could be discarded and more precise
intervals were obtained.

We represented with a point each repetition of the candidate
sequence over time, then we performed the density clustering
identifying the most density areas considered as a cluster.

Fig. 5 illustrates the distribution on a 1-D space before
the clustering and Fig. 6 displays the different clusters and
outliers detected by MeanShift algorithm. In this case, for
the displayed sequence, 3 different clusters were detected,
corresponding to the hours when operator prepares more
mixtures.

These automatically detected clusters are consistent with
the preliminary exploratory analysis undertaken to observe
the time intervals in which operators prepare more mixtures:

Fig. 5: Sequence repetition over time before clustering.

Fig. 6: Identifyed clusters after applying MeanShift algorithm.

between 7:00 am and 8:00 am when the work shift starts,
between 10:00 am and 11:00 am when the operator usually
has a break, and between 1:00 pm and 2:00 pm after operator
has lunch break. Fig. 7 illustrates times of the day when the
operators interact more with the industrial mixing machine
interface.

For each detected cluster, we selected the leftmost and
rightmost points, obtaining the begin and the end of the
adaptation interval.

4) Adaptation rules generation: In this step the candidate
sequences per operator were parsed and the adaptations rules
were generated. Those adaptations consisted on moving the
final informative elements to the initial HMI.

An example of adaptation rule is:
• Event: u3 is logged.
• Condition: current time is in detected clusters

[[”08:10:37”-”09:25:36”] , [”10:49:03”-”12:04:57”],
[”13:01:50”-”14:36:44”]]

• Action: Move element BTN3Additive to interface2 and
Move element BTN5Mixture-C to interface2.

The rule can be explained as operator u3 performs the same
interaction, in this case customizing the mixture, in the identi-

Fig. 7: Times of day when the greatest interaction takes place.



Fig. 8: Industrial mixing machine main interface adapted.

TABLE V: Results obtained in Phase 1 (α = 25th percentile).

Description Value
Single interactions 10,008 clicks

Valid sequences 894

Noise rate 11.26%

Candidate sequences 54 sequences

Nº of rules generated 54 rules

Average nº of clicks 10.36 clicks

Average sequence duration 29.62 seconds

Accuracy 91.7%

fied time intervals (clusters). Therefore, it is proposed to adapt
the initial interface displaying informative elements of the
final interface. This adaptation reduces the number of clicks
and improves the interaction, since the operator could select
the most probable additive level and mixture type in the first
interface, according to the historical data.

In addition, the proposed adaptation is integrated in the
application by parsing the generated adaptation rules. Once the
adaptation rule is activated, the operator will see the proposed
adapted interface in Fig. 8.

V. RESULTS AND DISCUSSION

The interaction data gathered during the experiment al-
lowed us to validate the proposed methodology. Table V
and Table VI present an overview of the obtained results.
For the experiment’s Phase 1, 10,008 were used to infer
the interface adaptation rules. In the experiment’s Phase 2,
1,024 single interactions were used to validate the model.
Accuracies achieved in both phases have been 91.7% and
84.5%, respectively for training and validation.

Establishing the threshold α as the 25th percentile for can-
didate sequences filtering, we obtained 54 different interaction
sequences and hence 54 temporal adaptation rules. On the
other hand, by extending the threshold to a less restrictive
value, we observed that the number of candidate sequences
increased. When α was set to the 30th percentile, the number
of candidate sequences increased to 195 sequences and with
the 35th percentile to 212. It should be noted that high volume
of interface adaptations adversely affects usability [11]. This
is why α was set to a restrictive value.

To assess the improvement in interaction by the application
of the generated temporal adaptation rules three different
evaluation metrics were defined:

• Interaction sequence number of clicks: Number of
clicks required by the operator to perform the action
inside the detected time interval.

TABLE VI: Results obtained in Phase 2 Validation.

Description Value
Single interactions 1,024 clicks

Valid sequences 91

Average nº of clicks 4.58 clicks

Average sequence duration 7.24 seconds

Accuracy 84.5%

• Interaction sequence duration: Time in seconds taken
by the operator to perform the sequence inside the de-
tected time interval.

• Operator validation of the adaptation rule: Operator
assessment of the proposed temporal adaptation.

A. Interaction sequence number of clicks

Table VI clearly shows a significant decrease in the number
of clicks. Using the standard, unmodified interface the aver-
age of number of clicks in candidate sequences was 10.36,
whereas after the adaptation rule was activated, the average
was reduced to 4.58 clicks.

This decrease occurs because the activation of adaptation
rule adapts the interface to the operator. Once the operator
accesses the main interface of the industrial mixing machine
and the adaptation rule is generated and applied, the initial
interface adapts itself and displays the informative elements
as shown in Fig. 8. Thus, the operator has only to press ”OK”
if the adaptation rule is correct, or the ”Back to the menu”
button and perform the sequence to select the values in the
contrary case.

In addition to decreasing the time required for the operator
to complete a given task, the lower number of clicks also
has implications for error reduction. Less clicks means less
opportunity for errors when carrying out repetitive monitoring
and control tasks.

B. Interaction sequence duration

Table VI shows the reduction in interaction sequence du-
ration. Applying the proposed methodology to the interaction
dataset, the sequence duration was reduced from an average
of 29.42 to 7.24 seconds. Being between 3-4 seconds the
interaction sequence duration when the proposed adaptation
is successful.

Once the adaptation rule is activated and the interface is
adapted, the operator does not have to interact with the indus-
trial mixing machine interface for setting different parameters,
and hence the interaction sequence duration is significantly
reduced.

C. Operator validation of the adaptation rule

This metric is defined as the percentage of times the operator
presses the ”OK” button when an interface adaptation rule is
activated and presented in the interface.

As can be seen in Table VI, 84.5% of proposed interface
adaptations were accurate, and validated by the operator
selecting OK in the adapted interface. This signifies that



the interface adaptations rules generated by the system were
widely accepted. In the remaining 15.5% of cases the adap-
tation rules did not present the required parameters and the
operators clicked the ”Back to menu” button to make further
adjustments.

VI. CONCLUSIONS AND FUTURE WORK

The use of Adaptive User Interfaces (AUI) in industrial
scenarios suggests a promising paradigm where interfaces
are able to adapt intelligently to the needs of the operator,
and hence improve overall industrial process performance.
In this paper, a Data-Driven methodology for generating
temporal adaptation rules in industrial scenarios was defined
and then validated experimentally. The main contribution is
a methodology to extract interaction patterns as adaptation
rules from a raw operator-HMI interaction dataset. These
adaptations optimize the interaction by reducing number of
clicks thereby improving operator efficiency when performing
repetitive control and monitoring tasks.

Obtained results by the end of the experiment validated
the adaptations presented the main interface, although several
improvements could be carried out in future works, to further
enhance the methodology. To improve time interval detection,
a more exhaustive study of the different density clustering
algorithms parameter tunning is required. With this modifica-
tion, we would be able to select the best clustering algorithm
for each situation and obtain adaptation intervals of much
greater accuracy. As regards threshold definition for candidate
sequences filtering, further research should be carried out to
establish an optimal value for each scenario.
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