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Abstract—Industrial environments have vastly changed since
the conception of initial primitive and isolated networks. The
current full interconnection paradigm, where connectivity be-
tween different devices and the Internet has become a business
necessity, has driven device interconnectivity towards building
the Industrial Internet of Things (IIoT), enabling added value
services such as supply chain optimization or improved process
control. However, whereas interconnectivity has increased, IIoT
security practices has not evolved at the same pace, due partly
to inherited security practices from when industrial networks
where not connected and the existence of basic hardware with
no security functionalities. In this work, we present an Anomaly
Detection System for industrial environments that monitors
physical quantities to detect intrusions. It is based in the null
space detection, which is at the same time, based on Stochastic
Subspace Identification (SSI). The approach is validated using
the Tennessee-Eastman chemical process.
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I. INTRODUCTION

Industrial environments are becoming less isolate con-
verging into increasingly interconnected environments, ef-
fectively creating an Industrial Internet of Things (IIoT). In
IIoT different actors, ranging from industrial devices at the
floor to remote servers in the cloud collaborate based on
data. Several services, such as predictive maintenance or
optimization can consume the data coming from different
IIoT devices. This data, must be collected, transferred and
analyzed to provide an answer, in real-time, if possible.

At the core of these interconnected environments, lay the
Industrial Control Systems (ICSs), devices that automate,
control and monitor the physical process. The popular
Programmable Logical Controllers (PLCs) are, perhaps, the
most iconic example of an ICS, as the responsible for
the first-level control of the process and the primary field
information forwarder from the attached sensors.

Whereas the IIoT paradigm is relatively new, most indus-
trial equipment and security practices applied to them are
not. ICSs have long lifespans and were not designed to be
interconnected to potentially hostile environments, such as
the Internet [1]. This allows malicious attackers to hide real

process status, as the Stuxnet attack case [2], or to steal
information (as Duqu [3] did).

Thus, in order to preserve the situational awareness and
availability of the process, while at the same time protecting
the confidentiality and integrity of the process-generated data
that is used for business decision-taking, it is necessary to
detect attacks that might compromise operations. In the case
of ICSs and IIoT, attack detection has been mainly done
through Intrusion Detection Systems (IDSs).

Generally, IDSs are divided into two main groups:
signature-based IDSs, and Anomaly Detection Systems
(ADSs). The first group monitors the system to find known
traces of malicious activity –known as signatures– while
the latter focuses on finding deviations from legitimate
activity. The main issue with signature-based IDSs is that
they are only effective against known threats whose traits are
registered in the signature database. If an unknown attack is
happening, signature-based IDSs will not be able to detect it.
On the contrary, ADSs are able to detect unknown attacks as
they do not need to detect known malicious traits for attack
detection, only deviations from normal behaviour. However,
ADSs yield a much higher number of false-positives and
have larger difficulties to diagnose the cause of an attack
or malicious event than their signature-based counterparts,
and that has had an impact for their widespread adoption by
industry [4].

However, as most of the activity in IIoT and ICSs is
created by automated processes (such as network traffic
and events), their behaviour tends to be more static and
deterministic than their IT-based counterparts, and thefore,
more suitable for Anomaly Detection [1].

In this paper, we present an Anomaly Detection System
that monitors the physical quantities of the process itself to
detect intrusions. In the following sections we present the
anomaly detection framework, the used case study and the
obtained results.

II. NULL SPACE ANOMALY DETECTION

Industrial environments are, in essence, multivariate en-
vironments, where control systems monitor a wide range



of physical properties, that are used for process control or
aggregate services.

Therefore, it is natural to deploy an ADS that leverages
this multivariate quality for detecting anomalies. Here, we
propose an ADS based on the null space detection method.
This method has already been proved effective in other
fields, such as damage detection [5]. In this work, we apply
null space to the field of intrusion detection.

Null Space is based in Stochastic Subspace Identification
(SSI) [6] methods and uses the measurement signals of the
process as input. The identification matrix used for this
anomaly detection method is the Hankel matrix.

The stochastic response from a system that is dependent
on time can be considered as follows:

Y = [y1,y2, . . . ,ym] (1)

where yk is the measurement vector, comprised by the
measurements gathered from the field.

The Hankel matrix can be computed in two manners:
based on covariances or based on data. The covariance-based
one is built as follows:

Hp,q =



Λ1 Λ2 Λ2 . . . Λq

Λ2 Λ3 . . . . . .
...

Λ3 . . . . . . . . .
...

...
. . . . . . . . .

...
Λp+1 . . . . . . . . . Λp+q


(2)

where p and q are the user-defined parameters and Λi

represents an estimation of the correlation matrix between
the different received measurements.

The block Hankel matrix defined in SSI is a set of
matrices that are created by displacing the original data
matrix. Different Λi can be estimated from a set of yk

measurements, such as:

Λi =

(
1

N − i− 1

)N−i∑
k=1

yk+iy
t
k (3)

Anomaly Detection in this model is based in the extraction
of the null space. In order to find the null space, the Hankel
matrix is decomposed in singular values:

Hpq = UHSHV ∗
H (4)

where UH is a unitary matrix, SH is a diagonal rectangular
matrix with real, non-negative numbers in the diagonal and
V ∗

H (the conjugate transpose of V H ) is a unitary matrix.
The Si,j diagonal elements of SH are known as the singular
values of Hp,q. The columns of UH and V ∗

H are called the
left and right singular vectors, respectively. The null space
of the Hankel matrix (UH0) is a matrix that fulfills the
following property:

U t
H0Hpq = 0 (5)

This null hypothesis is the basis of the Anomaly Detection
System. In essence, normal process measurements have to
fulfill the null hypothesis. Therefore, the Residual of a set
of measurements to be diagnosed can be defined as follows:

R = U t
H0Hij (6)

Consequently, using the UH0 calculated during an attack-
free training phase to calculate the residuals of a data capture
performed during Normal Operation Conditions (NOC), the
results will be minimal. On the contrary, when the residuals
are calculated when a process disturbance is happening or an
attack is taking place, the residuals will be more significant.
UH0 contains the maximum number of independent vector
columns that cover the null space of Hp,q. In order to find it,
it is necessary to find the Si,j singular values, that are equal
to zero, and then take the left singular vectors corresponding
to said null singular values.

The basic model is built using this null space, but in
order to give variability to the model, it is necessary to have
more input data. Therefore, in the learning phase, we use
several attack-free datasets to give more variability to the
basic model. This implementation of the algorithm can be
found in [5].

This algorithm returns an indicator, that we will define
as the Anomaly Indicator (AI), that measures the Euclidean
distance between the null space and the residual of the data
that is being monitored. In order to resolve if an anomaly
is happening or not, it is necessary to define a AI threshold
that, when surpassed, the event is classified as anomalous.
This threshold is calculated in the training phase, using NOC
data. The AIH indicators of some readings are calculated,
and the θ threshold is set as follows:

θ = µ(AIH) + 3σ(AIH) (7)

where µ and σ are the mean and the standard deviation,
respectively.

III. CASE STUDY

In this section we present the validation setup for the
Anomaly Detection System (ADS), both the used process
for data creation and the attack model.

A. Tennessee-Eastman process

The Tennessee-Eastman (TE) is a model of a chemical
process, originally presented by Downs and Vogel [7] as
a challenge or benchmark for testing different control ap-
proaches. Modeled after a real chemical process of the East-
man chemical company, the TE has some of the information,
such as the identity of the reactants and the products kept
hidden, in order to protect its proprietary nature.

The TE process produces two liquid products from four
gaseous reactants. In addition, there are also a byproduct
and an inert. The reactants are fed by three different feeds



and later react in the reactor to form said liquid products.
Later, these products are cleaned of reactant residuals using
a condenser, vapor-liquid separator and a stripping column.
The mixed products exit the stripping column to a sepa-
rate refining section (not part of the TE model) for their
separation. The process is monitored by using 41 measured
variables (XMEAS) and 12 manipulated variables (XMV).
Out of the measured variables, 22 of them are continuously
measured while the rest are sampled at fixed intervals and
are primarily related to product quality and have no impact
in process control. For more details on the TE operation,
refer to the original publication [7]

As stated previously, the original TE model was created
to evaluate different control approaches and therefore, lacks
an embedded control approach. For this paper, we used
the control devised by Larsson et al. [8]. More specifically,
we used the DVCP-TE 1 implementation, designed for ICS
security research.

Even if the TE was conceived for control purposes, its
preciseness and the scarce availability of physical models of
processes has pushed the TE as a widely used process for
field-level industrial security research [9], [10], [11].

B. Attack model

The attack model and adversary scenarios devised here
are the ones already presented in [12].

Following the work, we consider an attacked variable
Y ′
i (t) at time t, 0 ≤ t ≤ T as follows, where T is

the duration of the simulation and Ta the arbitrary attack
interval. An integrity attack is defined as follows:

Y ′
i (t) =

{
Yi(t), for t /∈ Ta

Y a
i (t), for t ∈ Ta

(8)

where Y a
i (t) is the modified variable value injected by the

attacker.
Similarly, during a Denial of Service (DoS) attack, the

attacker effectively stops communication, and no commu-
nication reaches the actuator or the controller. Krotofil et
al. [12] define as a DoS attack starting at ta as:

Y a
i (t) = Yi(ta − 1) (9)

where Y a
i is the last value received before the DoS attacks.

Table I shows the performed attacks. The chosen variables
reflect different physical properties present at different stages
of the process. Therefore, these variables represent the
diversity of the TE process and can prove that the null
space detection method works with diverse types of attacked
variables. All simulation runs are 72h long (except where the
simulation stops due to reaching safety limits) and all attacks
start after the 24h hour is completed. That is, per attack, we
run an independent simulation where in the first 24 hours

1https://github.com/satejnik/DVCP-TE

the process runs on Normal Operating Conditions (NOC),
and the attack starts at the end of the 24th hour. In the case
of the integrity attacks, we calculated the mean value of the
variable on the training phase and we performed an integrity
attack 10% larger than this mean value, that did not change
until the end of the simulation. The choice of parameters
was performed by evaluating the criticality of the signal and
choosing different physical quantities at different steps of
the process. The sampling rate is 100 observations per hour.

IV. RESULTS

Results for each of the attacks presented in Table I is
presented in Figures 1, 2, 3, 4 and 5. In each of the figures,
the value of the attack indicator is shown across simulation
length. The horizontal red dashed line corresponds to the θ
threshold value calculated as explained in Section II. The
training dataset corresponds to a 72h-long simulation of the
TE process under Normal Operation Conditions (NOC).

For each of the figures, a set of five-hour-long windows
have been set, where the readings from each of the time-
frames (500 per frame at the current observation rate) are
collected to compute the attack indicator. Therefore, the
attack indicator is calculated once every five hours and in the
figures it relates to the readings of the previous five hours.
For instance, when the attack indicator is plotted at the 20th
hour, it comprises the information from the sensor readings
of hours 15–20.

The figures show that the method is able to detect all
attacks (both integrity and DoS ones), as the attack indicator
value crosses the set threshold.

Out of the attack simulations performed, the one attacking
XMEAS1 (depicted in Figure 1) is the only one finishing
at the 72th hour, the original simulation length. The rest
of the attacks fail to do so because their effect drives the
TE process to its safety running limits and thus triggering
the process shutdown. In the case of the attacks depicted in
figures 2, 3 and 5 process shutdown is almost inmediate to
the attack, while in the XMEAS14 DoS attack, the control
algorithm keeps the TE running until the 40th hour.

Figure 1. Detection of Integrity attack on XMEAS1



Variable number Variable name Mean value Unit Attack type Attack value

XMEAS1 A feed (stream 1) 0.265 kscmh Integrity 0.292
XMEAS8 Reactor level 65.001 % Integrity 71.5
XMEAS9 Reactor temperature 122.90 ◦C Denial of Service N/A
XMEAS14 Product Separator underflow (stream 10) 25.35 m3h−1 Denial of Service N/A
XMEAS17 Stripper underflow (stream 11) 22.89 m3h−1 Integrity 25.18

Table I
PERFORMED ATTACKS

Figure 2. Detection of Integrity attack on XMEAS8

Figure 3. Detection of DoS attack on XMEAS9

V. RELATED WORK

The field of intrusion detection in industrial environments
has been a widely studied problem by the scientific commu-
nity. Traditionally, most of the proposals have been focused
in the network layer, adapting IT-based approaches to the
industrial world or leveraging particular industrial traffic
traits for anomaly detection, such as traffic periodicity (see
surveys [13], [14], [15] for a set of systematic analysis of
these types of approaches).

However, more recently, the attention of the scientific
community has shifted towards the monitoring of physical
quantities for attack detection. Urbina et al. [16] and Ding et

Figure 4. Detection of DoS attack on XMEAS14

Figure 5. Detection of Integrity attack on XEMAS17

al. [17] surveyed and classified works in this field. In [16],
most of the surveyed works were prediction-based, that
is, they predicted the next reading (mainly using Auto-
Regressive or Linear Dynamic State-space models) and
then compared the actual reading to the prediction. If the
difference between the predicted value and the received one
exceeded a threshold, an anomaly was flagged.

Other approaches have relied on data-driven methods,
where no model is built and no prediction made. Such pro-
posals have relied on different techniques, such as Transfer-
entropy-based causality countermeasures [11], Multivariate
Statistical Process Control [18], Clustering [10], [12].



Complementing the cited proposals, our work provides a
data-driven approach, with a single detection statistic (as
opposed to [18], [11], where it is necessary to monitor
two detection statistics), is able to detect attacks on-the-
fly (though not on real-time with the current setup) versus
clustering-based methods in [10], [9] where the detection is
made over a set of historical data.

VI. CONCLUSION

Attack detection in industrial environments is still an open
challenge where it is necessary to improve existing Intrusion
Detection Mechanisms in order to cope with newer threats
derived from the IIoT interconnection. We have presented an
Anomaly Detection System that relies on null space analysis
to detect field-level anomalies. The Anomaly Detection
System computes an attack indicator on a set of sensor
readings by checking if they fulfill the null hypothesis of an
attack-free capture. The approach has been validated using
the popular Tennessee-Eastman process and the preliminary
results show that the system is able to detect integrity and
DoS attacks.

A. Future work

Several improvements can be made to the detection
method in order to improve its performance. First, improving
the preprocessing steps can yield a more robust detection
mechanism. For instance, normalizing signal inputs and ap-
plying Principal Component Analysis (PCA) before applying
the null space method, has already given improved results
in the field of damage detection [19].

For the anomaly detection phase itself, instead of pro-
cessing the set of readings that happen over a fixed time-
frame, using a sliding-window where every new input is
processed along a set of previous readings, can allow to
detect anomalies in real-time. Moreover, using an sliding
window of different sizes, can also ease the process of
detecting more advanced and stealthy attacks, where the
affected variable is not permanently under attack once the
intrusion has started.

Additionally, an interesting addition could be to
parametrize network-level variables such as network flows
and logs and integrate them into the model.

Finally, the usage of other validation scenarios would
demonstrate the cross-domain nature of the null space
method, as in this case only a chemical process was used.
The usage of scenarios with randomness would help in
achieving statistically significant results as well.
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